The Crystal and Molecular Structures of trans-Di- μ-($\sigma: \eta^{3}$-cyclopentadienyl)-bis $\left(\eta^{5}-\right.$ cyclopentadienyl)dihydridoditungsten and the cis and trans Isomers of Di $-\mu$ - $\left(\sigma: \eta^{5}-\right.$ cyclopentadienyl)-bis (η^{3}-cyclopentadienyl)(hydrido)trimethylsilylmethylditungsten

By Claire Couldwell and Keith Prout
Chemical Crystallography Laboratory, 9 Parks Road, Oxford OX 1 3PD, England

(Received 6 September 1978; accepted 16 October 1978)

Abstract

The crystal structures of trans- $\left\{\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{H}) \mathrm{W} \mid \mu\right.$ $\left.\left.\left(\sigma: \eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4}\right)\right]_{2} \mathrm{~W}(\mathrm{H})\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right\}, \mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~W}_{2}$ (I) |triclinic, $a=6.058(1), b=7.679$ (3),$c=8.492$ (2) $\AA, \quad \pi=$ 92.53 (2), $\beta=101.27$ (2), $\gamma=100.95$ (2) ${ }^{\circ}, Z=1$, space group $P \overline{1}, 1937$ reflexions, $\left.R_{w}=0.079\right]$, cis- $\left\{\left(\eta^{5}-\right.\right.$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)\left[\mathrm{CH}_{2} \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right] \mathrm{W} \mid \mu-\left(\sigma: \eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4}\right)\right]_{2} \mathrm{~W}(\mathrm{H})\left(\eta^{5}-\right.$ $\mathrm{C}_{5} \mathrm{H}_{5}$) $\}, \mathrm{C}_{24} \mathrm{H}_{30} \mathrm{SiW}_{2}$ (II) [monoclinic, $a=8.756$ (8), $b=23.223$ (18), $c=10.672$ (5) $\AA, \beta=100.24$ (6$)^{\circ}$, $Z=4$, space group $P 2_{1} / n, 4091$ reflexions, $R_{w}=0.132$], and trans- $\left\{\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left[\mathrm{CH}_{2} \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right] \mathrm{W}\left[\mu-\left(\sigma: \eta^{5}-\right.\right.\right.$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{4}\right) I_{2} \mathrm{~W}(\mathrm{H})\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right\}, \quad \mathrm{C}_{24} \mathrm{H}_{30} \mathrm{SiW}_{2}$ (III) Imonoclinic, $a=16.530$ (2), $b=7.759$ (1), $c=18.208$ (2) \AA, $\beta=110.55(1)^{\circ}, Z=4$, space group $P 2_{1} / c, 2484$ reflexions, $R_{w}=0.0351$, have been determined. The bis[bis (η^{s}-cyclopentadienyl)tungsten] skeleton is similar in each structure. The W atoms, separated by (I) 3.811 (1), (II) 3.816 (1) and (III) 3.859 (1) \AA, are bridged by C atoms provided by the adjacent η^{5}-cyclopentadienyl rings, which are therefore formulated as $\mathrm{C}_{5} \mathrm{H}_{4}$. The coordination sphere about each W atom is completed either by a $\mathrm{CH}_{2} \mathrm{Si}_{\left(\mathrm{CH}_{3}\right)_{3}}$ group IW (1) in (II) and (III)| or by a hydrido ligand \mid (I), and W (2) in (II) and (III).

Introduction

During investigations of the photoinduced synthesis of binuclear tungstenocene derivatives it was found to be possible to achieve insertion of W into saturated $\mathrm{C}-\mathrm{H}$ bonds. Irradiation of $\left|\mathrm{W}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{H}_{2}\right|$ in diethyl ether yields trans- $\left(\left\{\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left|\mu-\left(\sigma: \eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4}\right)\right| W H\right\}_{2}\right)$ (Berry, Davies \& Green, 1978). Irradiation in tetramethylsilane gives isomeric dimers of stoichiometry $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{SiW}_{2}$ containing the $\mathrm{CH}_{2} \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}$ group, and a preliminary account of one of these has appeared (Green, Berry, Couldwell \& Prout, 1977). In that publication it was suggested that the less soluble isomer has the trans configuration. However, on closer examination and comparison with the other isomer it is found that the less soluble isomer is better described as
having a cis configuration. In this paper we report the structures of these three binuclear tungstenocene derivatives in detail.

Experimental

Small orange-brown plate-like crystals of all three compounds were provided by Miss M. Berry and Dr M. L. H. Green. The compounds are sensitive to air and moisture and were sealed under dry nitrogen in glass capillaries. It was not possible to measure their densities.

After survey photography by precession techniques, the crystals were set up on a Nonius CAD-4F PDP-8controlled κ-geometry diffractometer which used Mo K_{r} radiation from a graphite monochromator. Cell dimensions and the orientation matrix were obtained by least squares from the setting angles of 25 reflexions.

Crystal data

(a) Compound (I): $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~W}_{2}, M_{r}=628.0$, triclinic, $a=6.058(1), b=7.679(3), c=8.492(2) \AA, a=$ 92.53 (2), $\beta=101.27$ (2), $\gamma=100.95$ (2) ${ }^{\circ}, U=379.0$ \AA^{3}. Space group $P \overline{1}$ or $P 1 ; P \overline{1}$ from structure analysis. $D_{c}=2.75 \mathrm{Mg} \mathrm{m}^{-3}$ for $Z=1$. Mo $K a r$ radiation, $\lambda=$ $0.71069 \AA, \mu=15.5 \mathrm{~mm}^{-1} .1937$ independent reflexions, $I>3 \sigma(I) .^{*}$ No absorption correction.

The intensities of each independent reflexion with $\sin \theta / \lambda<0.70 \AA^{-1}$ were measured with an $\omega / 2 \theta$ scan, a variable scan rate and an ω scan angle of $1.20+$ $0.35 \tan \theta^{\circ}$.
(b) Compound (II): $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{SiW}_{2}, M_{r}=714 \cdot 3$, monoclinic, $a=8.756(8), b=23.223(18), c=$ $10.672(5) \AA, \beta=100.24(6)^{\circ}, U=2135.5 \AA^{3}$. Systematic extinctions: $0 k 0, k=2 n+1 ; h 0 l, h+l=$ $2 n+1$. Space group $P 2_{1} / n\left(\frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}+z\right) . D_{c}=$ $2.22 \mathrm{Mg} \mathrm{m}^{-3}$ for $Z=4$. Mo K ı radiation, $\lambda=0.71069$ $\AA, \mu=11.1 \mathrm{~mm}^{-1} .4091$ independent reflexions, $I>$ $3 \sigma(I)$. No absorption correction.

[^0]Preliminary scans showed the crystal to be quite badly split, but, as no other sample was available, it was decided to collect data in the hope that at least the gross structural features could be determined. The intensities of each independent reflexion with $\sin \theta / \lambda<$ $0.66 \AA^{-1}$ were measured with an ω / θ scan, a variable scan rate and an ω scan angle of $1.00+0.35 \tan \theta^{\circ}$. The preliminary account (Green, Berry, Couldwell \& Prout, 1977) used a limited data set $(\sin \theta / \lambda<0.59$ $\AA^{-1} ; 3057$ independent structure amplitudes).
(c) Compound (III): $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{SiW}_{2}, M_{r}=714 \cdot 3$, monoclinic, $a=16.530(2), b=7.759(1), c=$ 18.208 (2) $\AA, \beta=110.55(1)^{\circ}, U=2186.7 \AA^{3}$. Systematic extinctions: $0 k 0, k=2 n+1 ; h 0 l, l=2 n+$ 1. Space group $P 2_{1} / c . D_{c}=2 \cdot 17 \mathrm{Mg} \mathrm{m}^{-3}$ for $Z=4$. Mo $K a$ radiation, $\lambda=0.71069 \AA, \mu=10.8 \mathrm{~mm}^{-1}$. 2484 independent reflexions, $I>3 \sigma(I)$.

The intensities of at least two equivalents of every independent reflexion with $\sin \theta / \lambda<0.59 \AA^{-1}$ were measured with an $\omega / 2 \theta$ scan, a variable scan rate and an ω scan angle of $1.00+0.35 \tan \theta^{\circ}$. The data were corrected for absorption (North, Phillips \& Mathews, 1968). Before absorption corrections were applied the merging R was 0.095 and $R_{w} 0.031$; after these corrections R was 0.051 and $R_{w} 0.003$.

Structure solution and refinement

The structures were solved by Patterson and Fourier techniques and refined by full-matrix (I) or large block diagonal least squares I(II): block I: scale and dummy overall isotropic temperature factor (Rollett, 1965), block 2: positional parameters, block 3: corresponding temperature factors; (III): block 1 : scale, dummy overall isotropic temperature factor, overall isotropic extinction parameter (Larson, 1967), block 2: positional parameters, block 3: corresponding temperature factors]. The weighting scheme was $w=$ $1 / \sum_{r=1}^{n} A_{r} T_{r}^{*}(X)$, where n is the number of coefficients, A_{r}, for a Chebyshev series, T_{r}^{*} is the polynomial function, and X is $\left|F_{o}\right| /\left|F_{o}(\max)\right|$ (Rollett, 1965). All non-hydrogen atoms had anisotropic temperature factors.
(a) Compound (I). Difference syntheses permitted the location of the cyclopentadienyl ring H atoms in their expected positions. They were positioned geometrically $\left(\mathrm{C}-\mathrm{H}=1.0 \AA ; U_{\text {iso }}=0.05 \AA^{2}\right)$ and included in the structure factor calculations, their location being readjusted after each cycle. For the weighting scheme, three coefficients, A_{r}, were used with values of $12 \cdot 0,16 \cdot 2$ and $4 \cdot 9$, respectively, and the final R_{w} was 0.079 for 1937 reflexions.
(b) Compound (II). H atoms were not located. For the weighting scheme, five coefficients, A_{r}, were used with values of $11.7,11 \cdot 5,-4 \cdot 3,-7 \cdot 8$ and -2.7 ,
respectively, and the final R_{k} was 0.132 for 4091 reflexions.
(c) Compound (III). Difference syntheses showed some evidence for cyclopentadienyl ring and methyl H atoms at their expected positions. However, they were positioned geometrically $\left(\mathrm{C}-\mathrm{H}=1.0 \AA, U_{\text {iso }}=0.05\right.$ \AA^{2}) and included in the structure factor calculations, their location being readjusted after each cycle. In the final stages of refinement, an overall isotropic extinction parameter (26.92) was introduced, as well as the weighting scheme with three coefficients, A_{r}, with values of $421 \cdot 1,574 \cdot 1$ and 219.3 respectively. The final R_{w} was 0.035 for 2484 reflexions.

All calculations were performed on the Oxford University ICL 1906A computer with the CRYSTALS package (Carruthers, 1975). Complex neutral-atom scattering factors were taken from International Tables for X-ray Crystallography (1974).

Results and discussion

The final atomic positional parameters are given in Tables 1, 2 and 3 ,* and bond lengths and angles, with e.s.d.'s calculated from the variance-covariance matrix, in Tables 4, 5 and 6. Projections of the molecules are shown in Figs. 1, 2 and 3. Details of important molecular planes are given in Table 7.

[^1]Table 1. Compound (I) $\left(\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~W}_{2}\right)$: fractional atomic coordinates, with e.s.d.'s in parentheses

	x	y	z
$\mathrm{~W}(1)$	$0.14797(7)$	$0.13089(5)$	$0.20080(5)$
$\mathrm{C}(1)$	$-0.079(2)$	$-0.152(2)$	$0.188(1)$
$\mathrm{C}(2)$	$0.025(2)$	$-0.146(1)$	$0.048(1)$
$\mathrm{C}(3)$	$0.271(2)$	$-0.108(2)$	$0.108(1)$
$\mathrm{C}(4)$	$0.317(2)$	$-0.094(2)$	$0.282(1)$
$\mathrm{C}(5)$	$0.105(2)$	$-0.117(2)$	$0.332(1)$
$\mathrm{C}(6)$	$0.443(2)$	$0.358(2)$	$0.183(2)$
$\mathrm{C}(7)$	$0.246(3)$	$0.438(2)$	$0.164(2)$
$\mathrm{C}(8)$	$0.163(3)$	$0.422(2)$	$0.306(3)$
$\mathrm{C}(9)$	$0.296(3)$	$0.334(2)$	$0.415(2)$
$\mathrm{C}(10)$	$0.478(3)$	$0.295(2)$	$0.342(2)$
$\mathrm{H}(1)$	-0.2475	-0.1755	0.1866
$\mathrm{H}(3)$	0.3894	-0.0939	0.0397
$\mathrm{H}(4)$	0.4729	-0.0724	0.3549
$\mathrm{H}(5)$	0.0845	-0.1107	0.4456
$\mathrm{H}(6)$	0.5394	0.3488	0.1014
$\mathrm{H}(7)$	0.1788	0.4935	0.0661
$\mathrm{H}(8)$	0.0265	0.4687	0.3272
$\mathrm{H}(9)$	0.2697	0.3041	0.5239
$\mathrm{H}(10)$	0.6039	0.2347	0.3912

Table 2. Compound (II) (cis $-\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{SiW}_{2}$): fractional atomic coordinates, with e.s.d.'s in parentheses

	x	y	z
	$0.2725(1)$	$0.08701(4)$	$0.20973(9)$
$\mathrm{W}(1)$	$0.27273(1)$	$0.18946(4)$	$0.21371(9)$
$\mathrm{W}(2)$	-0.0673		
$\mathrm{Si}(1)$	$0.161(1)$	$-0.0515(3)$	$0.3353(7)$
$\mathrm{C}(1)$	$0.109(3)$	$0.0125(9)$	$0.232(2)$
$\mathrm{C}(2)$	$0.210(4)$	$-0.037(1)$	$0.512(2)$
$\mathrm{C}(3)$	$0.345(5)$	$-0.092(2)$	$0.305(3)$
$\mathrm{C}(4)$	$-0.013(5)$	$-0.102(1)$	$0.307(3)$
$\mathrm{C}(11)$	$0.386(3)$	$0.109(1)$	$0.043(3)$
$\mathrm{C}(12)$	$0.502(4)$	$0.089(1)$	$0.145(3)$
$\mathrm{C}(3)$	$0.477(4)$	$0.027(1)$	$0.169(3)$
$\mathrm{C}(14)$	$0.341(3)$	$0.013(1)$	$0.076(3)$
$\mathrm{C}(15)$	$0.277(3)$	$0.059(1)$	$-0.001(3)$
$\mathrm{C}(21)$	$0.347(3)$	$0.096(1)$	$0.425(3)$
$\mathrm{C}(22)$	$0.185(3)$	$0.107(1)$	$0.397(2)$
$\mathrm{C}(23)$	$0.149(3)$	$0.1569(9)$	$0.315(2)$
$\mathrm{C}(24)$	$0.311(3)$	$0.175(1)$	$0.294(2)$
$\mathrm{C}(25)$	$0.428(3)$	$0.140(1)$	$0.363(3)$
$\mathrm{C}(31)$	$-0.177(3)$	$0.226(1)$	$0.384(3)$
$\mathrm{C}(32)$	$-0.028(4)$	$0.244(1)$	$0.404(3)$
$\mathrm{C}(33)$	$-0.001(4)$	$0.278(1)$	$0.292(4)$
$\mathrm{C}(34)$	$-0.157(3)$	$0.279(1)$	$0.204(3)$
$\mathrm{C}(35)$	$-0.267(5)$	$0.244(1)$	$0.268(3)$
$\mathrm{C}(41)$	$-0.104(3)$	$0.199(1)$	$0.003(3)$
$\mathrm{C}(42)$	$-0.204(4)$	$0.154(1)$	$0.028(2)$
$\mathrm{C}(43)$	$-0.102(2)$	$0.1067(7)$	$0.088(2)$
$\mathrm{C}(44)$	$0.063(3)$	$0.124(1)$	$0.101(2)$
$\mathrm{C}(45)$	$0.053(4)$	$0.183(1)$	$0.048(2)$

The unit cell for each compound contains (I) one, (II) four and (III) four molecules with the structures shown in Figs. 1, 2 and 3 respectively. The dimer in (I) has crystallographic point symmetry C_{i} in space group $P \overline{1}$. The successful refinement was taken as confirmation of this space group and no calculations were made in Pl.

The $\operatorname{bis}\left[\operatorname{bis}\left(\eta^{5}\right.\right.$-cyclopentadienyl)tungsten] skeleton has the trans configuration in (I), cis in (II) and trans in (III). Figs. 1 and 3 show the similarity between the skeletons in (I) and (III), that is, the two with trans configurations. The W atoms, separated by (I)

Fig. 1. Projection of trans- $\left\{\left(\eta^{3}-\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{H}) \mathrm{W} \mid \mu-\left(\sigma: \eta^{3}-\mathrm{C}_{5} \mathrm{H}_{4}\right)\right]_{2}-$ $\left.\mathrm{W}(\mathrm{H})\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right\}$ on to the plane containing the two W atoms and the normals to the ($\eta^{3}-\mathrm{C}_{5} \mathrm{H}_{5}$) rings. For clarity, the C atoms are labelled by their serial number only.

Table 3. Compound (III) (trans $-\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{SiW}_{2}$): fractional atomic coordinates, with e.s.d.'s in parentheses

	x	y	z
W(1)	$0 \cdot 17290$ (2)	0.09300 (5)	0.22205 (2)
W(2)	0.38441 (2)	$0 \cdot 32755$ (5)	$0 \cdot 34046$ (2)
Si(1)	$0 \cdot 1947$ (2)	-0.1412 (5)	0.0523 (2)
C(1)	0.2399 (6)	-0.072 (1)	0.1566 (6)
C(2)	0.192 (1)	0.041 (2)	-0.0152 (8)
C(3)	0.265 (1)	-0.313 (2)	0.0336 (8)
C(4)	0.0846 (9)	-0.236 (2)	0.0171 (7)
C(11)	$0 \cdot 1146$ (8)	0.009 (2)	0.3116 (8)
C(12)	0.0454 (7)	0.051 (2)	0.2394 (8)
C(13)	0.0457 (7)	-0.069 (2)	$0 \cdot 1793$ (8)
C(14)	$0 \cdot 1121$ (8)	-0.188 (1)	$0 \cdot 2152$ (7)
C(15)	0.1548 (8)	-0.141 (2)	$0 \cdot 2969$ (7)
C(21)	0.1437 (7)	0.297 (1)	$0 \cdot 1257$ (7)
C(22)	0.2359 (7)	0.299 (1)	$0 \cdot 1684$ (6)
C(23)	0.2593 (6)	0.350 (1)	0.2471 (6)
C(24)	$0 \cdot 1776$ (7)	0.376 (1)	0.2575 (7)
C(25)	$0 \cdot 1081$ (7)	0.347 (1)	$0 \cdot 1836$ (7)
C(31)	0.5026 (8)	0.504 (2)	0.3918 (7)
C(32)	0.5136 (7)	0.391 (2)	0.3329 (7)
C(33)	0.4503 (8)	0.429 (2)	0.2583 (8)
C(34)	0.4020 (9)	0.570 (2)	0.271 (1)
C(35)	0.434 (1)	0.613 (2)	0.353 (1)
C(41)	0.4482 (8)	0.078 (1)	$0 \cdot 3874$ (6)
C(42)	0.4075 (8)	0.140 (2)	0.4393 (6)
C(43)	0.3173 (8)	$0 \cdot 135$ (1)	0.3958 (6)
C(44)	0.2986 (6)	0.075 (1)	0.3159 (6)
C(45)	0.3836 (7)	0.041 (1)	0.3130 (7)
H(111)	0.2940	-0.0079	$0 \cdot 1613$
H(112)	0.2553	-0.1817	$0 \cdot 1873$
H(221)	0.1679	-0.0003	-0.0707
H(222)	0.2526	0.0841	-0.0041
H(223)	0.1558	0.1359	-0.0070
H(331)	0.2404	-0.3501	-0.0225
H(332)	0.3246	-0.2670	0.0451
H(333)	0.2673	-0.4146	0.0683
H(441)	0.0680	-0.2673	-0.0393
H(442)	0.0840	-0.3412	0.0486
H(443)	0.0426	-0.1495	0.0237
H(11)	0.1311	0.0742	0.3624
H(12)	0.0036	0.1480	0.2323
H(13)	0.0064	-0.0690	$0 \cdot 1230$
H(14)	0.1275	-0.2891	$0 \cdot 1887$
H(15)	0.2042	-0.2043	0.3360
H(21)	0.1124	0.2676	0.0693
H(22)	0.2793	0.2660	0.1438
H(24)	0.1701	0.4080	0.3081
H(25)	0.0449	0.3598	0.1742
H(31)	0.5374	0.5043	0.4493
H(32)	0.5592	0.3001	0.3430
H(33)	0.4415	0.3679	$0 \cdot 2074$
H(34)	0.3533	0.6299	0.2290
H(35)	0.4112	0.7064	0.3779
H(41)	0.5119	0.0623	0.4013
H(42)	0.4362	$0 \cdot 1782$	0.4950
H(43)	0.2718	0.1703	0.4175
H(45)	0.3953	-0.0009	0.2657

3.811 (1), (II) 3.816 (1) and (III) 3.859 (1) \AA, are bridged by C atoms provided by the adjacent η^{5}-cyclopentadienyl rings, which are therefore formulated as $\mathrm{C}_{5} \mathrm{H}_{4}$. The coordination sphere about each W atom is completed either by a $\mathrm{CH}_{2} \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}$ group ($\mathrm{W}(1)$ in (II) and (III)] or by a hydrido ligand [(I), and W(2) in (II)

Table 4. Compound (I) $\left(\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~W}_{2}\right)$: interatomic distances (\AA) and bond angles $\left({ }^{\circ}\right)$

W(1)-W(1) 3 -	$3 \cdot 811$ (1)	W(1)-C(2i)	$2 \cdot 19$ (1)
W(1)-C(1) 2.3	$2 \cdot 32$ (1)	W(1)-C(6)	$2 \cdot 28$ (1)
$\mathrm{W}(1)-\mathrm{C}(2) \quad 2.3$	$2 \cdot 35$ (1)	W(1)-C(7)	2.37 (1)
$\mathrm{W}(1)-\mathrm{C}(3) \quad 2$.	$2 \cdot 27$ (1)	$\mathrm{W}(1)-\mathrm{C}(8)$	2.35 (1)
W(1)-C(4) 2.2	$2 \cdot 24$ (1)	W(1)-C(9)	$2 \cdot 27$ (1)
W(1)--C(5) 2.	$2 \cdot 25$ (1)	W(1)-C(10)	$2 \cdot 23$ (1)
$\mathrm{C}(1)-\mathrm{C}(2) \quad 1$.	1.45 (2)	C (6)-C(7)	1.42 (2)
$\mathrm{C}(2)-\mathrm{C}(3) \quad 1$.	1.45 (2)	$\mathrm{C}(7)-\mathrm{C}(8)$	$1 \cdot 40$ (3)
$\mathrm{C}(3)-\mathrm{C}(4) \quad 1$.	1.45 (2)	$\mathrm{C}(8)-\mathrm{C}(9)$	1.39 (3)
$\mathrm{C}(4)-\mathrm{C}(5) \quad 1$.	1.41 (2)	$\mathrm{C}(9)-\mathrm{C}(10)$	1.44 (2)
$\mathrm{C}(5)-\mathrm{C}(1) \quad 1$.	1.46 (2)	$\mathrm{C}(10)-\mathrm{C}(6)$	1.44 (2)
$\mathrm{C}\left(2^{1}\right)-\mathrm{W}(1)-Q(1)^{*}$	* 101	$\mathrm{C}\left(2^{1}\right)-W(1)-Q(2)$	108
$Q(1)-W(1)-Q(2)$	147		
$\mathrm{C}(5)-\mathrm{C}(1)-\mathrm{C}(2)$	108 (1)	$\mathrm{C}(10)-\mathrm{C}(6)-\mathrm{C}(7)$	108 (1)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	107 (1)	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	107 (1)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	109 (1)	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	111 (1)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	108 (1)	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	108 (1)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(1)$	108 (1)	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(6)$	107 (1)

[^2]and (III)]. The hydrido H atom is postulated because, although there is no direct evidence for it from the electron density distribution, its presence is inferred from NMR measurements and the observed stereochemical arrangement about the W atom, and it is required to bring the W atom to the 18 e configuration.

The $\operatorname{bis}\left(\eta^{5}\right.$-cyclopentadienyl)tungsten groupings in the molecules have significantly different geometries from those observed in many other systems. For (I) the W-ring perpendicular distances are 1.93 and $1.95 \AA$, and the angle between the ring normals is 141°. In (II) these distances are in the range $1.91-1.95 \AA$ and the angles between the ring normals are 137° for $\mathrm{W}(1)$ and 142° for $W(2)$; in (III) the distances range from 1.93 to $1.97 \AA$, and the angles are $136^{\circ} \mathrm{W}(1)$ and $141^{\circ} \mathrm{W}(2)$.

Fig. 2. Projection of cis- $\left\{\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left|\mathrm{CH}_{2} \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right| \mathrm{W} \mid \mu-\left(\sigma: \eta^{5}\right.\right.$ $\left.\left.\left.\mathrm{C}_{5} \mathrm{H}_{4}\right)\right\}_{2} \mathrm{~W}(\mathrm{H})\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right\}$ on to the plane containing the two W atoms and the normals to the $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ rings. For clarity, the C atoms are labelled by their serial number only.

Table 5. Compound (II) (cis- $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{SiW}_{2}$): interatomic distances (\AA) and bond angles $\left({ }^{\circ}\right)$

W(1)-W(2)	3.816 (1)	$\mathrm{Si}(1)-\mathrm{C}(1)$	1.86 (2)
W(1)-C(1)	2.29 (2)	$\mathrm{Si}(1)-\mathrm{C}(2)$	1.89 (3)
W(1)-C(44)	$2 \cdot 17$ (3)	$\mathrm{Si}(1)-\mathrm{C}(3)$	1.94 (4)
W(1)-C(11)	2.25 (2)	$\mathrm{Si}(1)-\mathrm{C}(4)$	1.90 (4)
$\mathrm{W}(1)-\mathrm{C}(12)$	2.24 (3)	$\mathrm{C}(11)-\mathrm{C}(12)$	1.43 (5)
W(1)-C(13)	2.37 (3)	$\mathrm{C}(12)-\mathrm{C}(13)$	1.48 (4)
W(1)-C(14)	$2 \cdot 39$ (3)	$\mathrm{C}(13)-\mathrm{C}(14)$	1.45 (5)
W(1)-C(15)	$2 \cdot 35$ (2)	$\mathrm{C}(14)-\mathrm{C}(15)$	1.40 (4)
W(1)-C(21)	2.28 (3)	$\mathrm{C}(15)-\mathrm{C}(11)$	1.53 (5)
W(1)-C(22)	$2 \cdot 32$ (2)	$\mathrm{C}(21)-\mathrm{C}(22)$	1.42 (4)
W(1)-C(23)	2.34 (2)	$\mathrm{C}(22)-\mathrm{C}(23)$	1.45 (3)
W(1)-C(24)	$2 \cdot 23$ (2)	$\mathrm{C}(23)-\mathrm{C}(24)$	1.53 (3)
W(1)-C(25)	$2 \cdot 29$ (3)	C(24)-C(25)	1.40 (4)
W(2)-C(23)	$2 \cdot 15$ (2)	C (25)-C(21)	1.47 (4)
W(2)-C(31)	$2 \cdot 36$ (2)	$\mathrm{C}(31)-\mathrm{C}(32)$	$1 \cdot 35$ (4)
W(2)-C(32)	$2 \cdot 36$ (3)	$\mathrm{C}(32)-\mathrm{C}(33)$	1.48 (5)
W(2)-C(33)	$2 \cdot 26$ (2)	$\mathrm{C}(33)-\mathrm{C}(34)$	1.52 (4)
W(2)-C(34)	2.21 (3)	$\mathrm{C}(34)-\mathrm{C}(35)$	1.50 (5)
W(2)-C(35)	$2 \cdot 32$ (3)	$\mathrm{C}(35)-\mathrm{C}(31)$	1.41 (5)
W(2)-C(41)	2.23 (3)	$\mathrm{C}(41)-\mathrm{C}(42)$	1.42 (4)
W(2)-C(42)	$2 \cdot 28$ (3)	$\mathrm{C}(42)-\mathrm{C}(43)$	1.49 (3)
W(2)-C(43)	2.33 (2)	$\mathrm{C}(43)-\mathrm{C}(44)$	1.48 (3)
W(2)-C(44)	2.36 (2)	$\mathrm{C}(44)-\mathrm{C}(45)$	1.49 (3)
W(2)-C(45)	$2 \cdot 22$ (3)	$\mathrm{C}(45)-\mathrm{C}(41)$	1.42 (4)

$\mathrm{C}(1)-\mathrm{W}(1)-\mathrm{C}(44)$	$82 \cdot 5(9)$	$\mathrm{C}(23)-\mathrm{W}(2)-Q(5)$	107
$\mathrm{C}(1)-\mathrm{W}(1)-Q(3) *$	105	$\mathrm{C}(23)-\mathrm{W}(2)-Q(6)$	97
$\mathrm{C}(1)-\mathrm{W}(1)-Q(4)$	107	$Q(5)-\mathrm{W}(2)-Q(6)$	150
$\mathrm{C}(44)-\mathrm{W}(1)-Q(3)$	107	$\mathrm{C}(1)-\mathrm{Si}(1)-\mathrm{C}(2)$	$116(1)$
$\mathrm{C}(44)-\mathrm{W}(1)-Q(4)$	97	$\mathrm{C}(1)-\mathrm{Si}(1)-\mathrm{C}(3)$	$115(1)$
$Q(3)-\mathrm{W}(1)-Q(4)$	142	$\mathrm{C}(1)-\mathrm{Si}(1)-\mathrm{C}(4)$	$107(1)$
$\mathrm{W}(1)-\mathrm{C}(1)-\mathrm{Si}(1)$	$125(1)$	$\mathrm{C}(2)-\mathrm{Si}(1)-\mathrm{C}(3)$	$102(1)$
		$\mathrm{C}(2)-\mathrm{Si}(1)-\mathrm{C}(4)$	$107(2)$
		$\mathrm{C}(3)-\mathrm{Si}(1)-\mathrm{C}(4)$	$110(2)$
$\mathrm{C}(15)-\mathrm{C}(11)-\mathrm{C}(12)$	$107(3)$	$\mathrm{C}(35)-\mathrm{C}(31)-\mathrm{C}(32)$	$115(3)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$110(3)$	$\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{C}(33)$	$109(3)$
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	$104(3)$	$\mathrm{C}(32)-\mathrm{C}(33)-\mathrm{C}(34)$	$104(3)$
$\mathrm{C}(3)-\mathrm{C}(14)-\mathrm{C}(15)$	$115(3)$	$\mathrm{C}(33)-\mathrm{C}(34)-\mathrm{C}(35)$	$107(3)$
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(11)$	$104(3)$	$\mathrm{C}(34)-\mathrm{C}(35)-\mathrm{C}(1)$	$104(3)$
$\mathrm{C}(25)-\mathrm{C}(21)-\mathrm{C}(22)$	$108(2)$	$\mathrm{C}(45)-\mathrm{C}(41)-\mathrm{C}(42)$	$110(2)$
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	$112(2)$	$\mathrm{C}(41)-\mathrm{C}(42)-\mathrm{C}(43)$	$106(3)$
$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$	$101(2)$	$\mathrm{C}(42)-\mathrm{C}(43)-\mathrm{C}(44)$	$110(2)$
$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)$	$112(2)$	$\mathrm{C}(43)-\mathrm{C}(44)-\mathrm{C}(45)$	$103(2)$
$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(21)$	$106(2)$	$\mathrm{C}(44)-\mathrm{C}(45)--\mathrm{C}(41)$	$111(2)$

[^3]Typical values in simple $\operatorname{bis}\left(\eta^{5}\right.$-cyclopentadienyl)tungsten systems are $1.99 \AA$ and 134° in $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$ $\mathrm{W}\left[\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{I}_{2}\right.$ (Forder, Jefferson \& Prout, 1975), $1.99 \AA$ and 134° in $\left\{\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{~W}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2}-\right.$ $\mathrm{CH}_{2} \mathrm{P}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~J}^{+}$(Forder, Gale \& Prout, 1975), and $1.99 \AA$ and 132.4° in $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{~W}\left(\mu-\mathrm{SC}_{6} \mathrm{H}_{5}\right)_{2}-$ $\mathrm{W}(\mathrm{CO})_{4}$ (Prout \& Rees, 1974). The correlation between short metal-ring distances and wide inter-ring angles could be a result of the geometrical requirements of σ bonding to the adjacent W atom, but it is probably steric in origin, resulting from the need to restrict non-bonded interactions between cyclopentadienyl ring H atoms, as it occurs in other systems where there are no bridging cyclopentadienyl groups; for

Table 6. Compound (III) (trans- $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{SiW}_{2}$): interatomic distances (\AA) and bond angles (${ }^{\circ}$)

W(1)-W(2) 3.85	3.859 (1)	$\mathrm{Si}(1)-\mathrm{C}(1) \quad 1.86$	86 (1)
W(1)-C(1) 2.28	2.284 (9)	$\mathrm{Si}(1)-\mathrm{C}(2) \quad 1.86$	(2)
W(1)-C(44) 2.18	$2 \cdot 18$ (1)	$\mathrm{Si}(1)-\mathrm{C}(3) \quad 1.88$	(2)
W(1)-C(11) 2.26	2.26 (1)	$\mathrm{Si}(1)-\mathrm{C}(4) \quad 1.86$	(1)
$\mathrm{W}(1)-\mathrm{C}(12) \quad 2.26$	$2 \cdot 26$ (1)	$\mathrm{C}(11)-\mathrm{C}(12) \quad \mathrm{I} .4$	(2)
W(1)-C(13) 2.34	$2 \cdot 34$ (1)	$\mathrm{C}(12)-\mathrm{C}(13) \quad 1.4$	44 (2)
W(1)-C(14) 2.39	$2 \cdot 39$ (1)	$\mathrm{C}(13)-\mathrm{C}(14) \quad 1.4$	41 (2)
W(1)-C(15) 2.35	2.35 (1)	C(14)-C(15)	(2)
W(1)-C(21) 2.28	$2 \cdot 28$ (1)	$\mathrm{C}(15)-\mathrm{C}(11)$	(2)
$\mathrm{W}(1)-\mathrm{C}(22) \quad 2 \cdot 30$	$2 \cdot 30$ (1)	$\mathrm{C}(21)-\mathrm{C}(22) \quad 1.4$	45 (2)
W(1)-C(23) 2.40	$2 \cdot 40$ (1)	$\mathrm{C}(22)-\mathrm{C}(23) \quad 1.4$	41 (2)
W(1)-C(24) 2.28	$2 \cdot 28$ (1)	$\mathrm{C}(23)-\mathrm{C}(24) \quad 1$.	44 (1)
W(1)-C(25) 2.23	$2 \cdot 23$ (1)	$\mathrm{C}(24)-\mathrm{C}(25) \quad 1.4$	45 (2)
W (2)-C(23) 2.18	$2 \cdot 18$ (1)	$\mathrm{C}(25)-\mathrm{C}(21) \quad 1.4$	(2)
$\mathrm{W}(2)-\mathrm{C}(31) \quad 2.30$	$2 \cdot 30$ (1)	$\mathrm{C}(31)-\mathrm{C}(32) \quad 1.4$	(2)
W (2)-C(32) 2.24	$2 \cdot 24$ (1)	$\mathrm{C}(32)-\mathrm{C}(33) \quad 1.4$	43 (2)
W(2)-C(33) 2.28	$2 \cdot 28$ (1)	C(33)-C(34)	(2)
W (2)-C(34) 2.35	$2 \cdot 35$ (1)	C(34)-C(35)	(2)
W (2)-C(35) 2.35	2.35 (1)	$\mathrm{C}(35)-\mathrm{C}(31)$	39 (2)
W (2)-C(41) 2.23	2.23 (1)	$\mathrm{C}(41)-\mathrm{C}(42) \quad 1.4$	(2)
W (2)-C(42) 2.24	2.24 (1)	$\mathrm{C}(42)-\mathrm{C}(43) \quad 1$.	(2)
W(2)-C(43) 2.29	2.29 (1)	$\mathrm{C}(43)-\mathrm{C}(44) \quad 1.4$	(2)
W (2)-C(44) 2.37	2.37 (1)	C(44)-C(45) 1.	45 (1)
W (2)-C(45) 2.28	2.28 (1)	$\mathrm{C}(45)-\mathrm{C}(41)$	(2)
$\mathrm{C}(1)-\mathrm{W}(1)-\mathrm{C}(44)$	82.5 (4)	$\mathrm{C}(23)-\mathrm{W}(2)-Q(9)$	107
$\mathrm{C}(1)-\mathrm{W}(1)-Q(7)^{*}$	105	$\mathrm{C}(23)-\mathrm{W}(2)-Q(10)$	97
$\mathrm{C}(1)-\mathrm{W}(1)-Q(8)$	108	$Q(9)-\mathrm{W}(2)-Q(10)$	147
$\mathrm{C}(44)-\mathrm{W}(1)-Q(7)$	107	$\mathrm{C}(1)-\mathrm{Si}(1)-\mathrm{C}(2)$	111.3 (7)
$\mathrm{C}(44)-\mathrm{W}(1)-Q(8)$	96	$\mathrm{C}(1)-\mathrm{Si}(1)-\mathrm{C}(3)$	109.8 (5)
$Q(7)-W(1)-Q(8)$	142	$\mathrm{C}(1)-\mathrm{Si}(1)-\mathrm{C}(4)$	117.5 (5)
$\mathrm{W}(1)-\mathrm{C}(1)-\mathrm{Si}(1)$	126.9 (5)	$\mathrm{C}(2)-\mathrm{Si}(1)-\mathrm{C}(3)$	106.9 (8)
		$\mathrm{C}(2)-\mathrm{Si}(1)-\mathrm{C}(4)$	$106 \cdot 3$ (8)
		$\mathrm{C}(3)-\mathrm{Si}(1)-\mathrm{C}(4)$	104.5 (7)
$\mathrm{C}(15)-\mathrm{C}(11)-\mathrm{C}(12)$	107 (1)	$\mathrm{C}(35)-\mathrm{C}(31)-\mathrm{C}(32)$	106 (1)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	110 (1)	$\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{C}(33)$	110 (1)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	106 (1)	$\mathrm{C}(32)-\mathrm{C}(33)-\mathrm{C}(34)$	106 (1)
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	110 (1)	$\mathrm{C}(33)-\mathrm{C}(34)-\mathrm{C}(35)$	109 (1)
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(11)$	108 (1)	C(34)-C(35)-C(31)	109 (1)
$\mathrm{C}(25)-\mathrm{C}(21)-\mathrm{C}(22)$	103 (1)	C(45)-C(41)-C(42)	109 (1)
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	114 (1)	C(41)-C(42)-C(43)	106 (1)
C(22)-C(23)-C(24)	104 (1)	C(42)-C(43)-C(44)	112 (1)
C(23)-C(24)-C(25)	109 (1)	C(43)-C(44)-C(45)	103 (1)
$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(21)$	109 (1)	C(44)-C(45)-C(41)	110 (1)

* Q represents the centroid of the appropriate plane: $Q(7)$ ring $\mathrm{C}(11)$ to $\mathrm{C}(15) ; Q(8)$ ring $\mathrm{C}(21)$ to $\mathrm{C}(25) ; Q(9)$ ring $\mathrm{C}(31)$ to $C(35) ; Q(10)$ ring $C(41)$ to $C(45)$.
example, $1.90-1.93 \AA$ and $148-149^{\circ}$ in $\mathrm{I}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}-$ $M(\mathrm{H}) \mathrm{Li}_{4}(M=\mathrm{Mo}, \mathrm{W})$ (Forder \& Prout, 1974b), $1.94-1.95 \AA$ and $143-145^{\circ}$ in $\left[\mathrm{Mo}(\mathrm{H})\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\right.$ $\left.\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)\right)_{2} \mathrm{Al}_{3}\left(\mathrm{CH}_{3}\right)_{5}$, and 1.93-1.94 \AA and 151° in $\left[\mathrm{Mo}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)_{2} \mathrm{Al}_{2}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{I}_{2}\right.$ (Forder \& Prout, 1974a). Also, in support of this steric argument, for (II) and (III) the inter-ring angles are smaller at $\mathrm{W}(1)$ with the more bulky $\mathrm{CH}_{2} \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}$ ligand.

The W -ring perpendicular distances are shorter for those rings involved in the σ bonding; that is, ring $\mathrm{C}(1)$ to $C(5)$ in (I), and rings $C(21)$ to $C(25)$ and $C(41)$ to $\mathrm{C}(45)$ in (II) and (III). The constraint imposed by the bridging $\mathrm{C}_{5} \mathrm{H}_{4}$ groups by the bonding to the adjacent W atom is important, as it also leads to short $\mathrm{W}-\mathrm{C} \sigma$

Table 7. Equations of least-squares best planes and, in square brackets, distances (\AA) of atoms from the planes

The equations are referred to the crystal axes and x, y, and z are fractional coordinates.

Compound (I)
Plane (1): ring $\mathrm{C}(1)$ to $\mathrm{C}(5)$

$$
1.026 x-7.677 y+0.449 z=1.165
$$

$\mid \mathrm{C}(1) 0.004, \mathrm{C}(2) 0.003, \mathrm{C}(3)-0.008, \mathrm{C}(4) 0.011, \mathrm{C}(5)-0.009$, W (1)* -1.928]

Normal to $\mathrm{W}(1)$ meets plane $0.11 \AA$ from centroid.
Plane (2): ring $C(6)$ to $C(10)$

$$
-2 \cdot 173 x-5.904 y-1 \cdot 960 z=-3.440
$$

$[\mathrm{C}(6) 0.003, \mathrm{C}(7) 0.003, \mathrm{C}(8)-0.008, \mathrm{C}(9) 0.010, \mathrm{C}(10)-0.008$, W(1)* 1.952]

Normal to $\mathrm{W}(1)$ meets plane $0.15 \AA$ from centroid.
Compound (II)
Plane (3): ring $C(11)$ to $C(15)$

$$
-6 \cdot 188 x+5 \cdot 769 y+8 \cdot 298 z=-1 \cdot 397
$$

$[\mathrm{C}(11)-0.011, \mathrm{C}(12) 0.006, \mathrm{C}(13) 0.003, \mathrm{C}(14)-0.011$, $\mathrm{C}(15) 0.013$, W (1)* 1.953]

Normal to $\mathrm{W}(1)$ meets plane $0 \cdot 17 \AA$ from centroid.
Plane (4): ring $C(21)$ to $C(25)$

$$
0.588 x-13.817 y-8.539 z=-4.761
$$

$[C(21) 0.016, C(22)-0.006, C(23)-0.006, C(24) 0.016$, $\mathrm{C}(25)-0.020$, W (1)* 1.928]

Normal to $\mathrm{W}(1)$ meets plane $0.07 \AA$ from centroid.
Plane (5): ring $\mathrm{C}(31)$ to $\mathrm{C}(35)$

$$
-2.923 x+19.328 y+5 \cdot 282 z=6.921
$$

$\mid C(31) 0.000, \quad \mathrm{C}(32) 0.001, \mathrm{C}(33)-0.001, \mathrm{C}(34) 0.001$, $\left.\mathrm{C}(35)-0.001, \mathrm{~W}(2)^{*}-1.934\right]$

Normal to $W(2)$ meets plane $0.20 \AA$ from centroid.
Plane (6): ring $C(41)$ to $C(45)$

$$
1.748 x-8.897 y-9.850 z=-1.995
$$

$1 \mathrm{C}(41) 0.013, \mathrm{C}(42)-0.008, \mathrm{C}(43) 0.000, \mathrm{C}(44) 0.007$, $\left.\mathrm{C}(45)-0.013, \mathrm{~W}(2)^{*}-1.914\right]$

Normal to $W(2)$ meets plane $0.11 \AA$ from centroid.
Compound (III)
Plane (7): ring $\mathrm{C}(11)$ to $\mathrm{C}(15)$

$$
-12.828 x-4.473 y+9.321 z=1.407
$$

$[\mathrm{C}(11)-0.014, \mathrm{C}(12) 0.016, \mathrm{C}(13)-0.011, \mathrm{C}(14) 0.003$, C(15) 0.007, W (1)* -1.971$]$

Normal to $W(1)$ meets plane $0 \cdot 14 \AA$ from centroid.
Plane (8): ring $C(21)$ to $C(25)$

$$
2.032 x+7.444 y-5 \cdot 118 z=1.854
$$

lC(21) $0.004, \mathrm{C}(22)-0.013, \mathrm{C}(23) 0.017, \mathrm{C}(24)-0.015$, C(25) 0.007, W(1)* 1.947

Normal to $W(1)$ meets plane $0 \cdot 14 \AA$ from centroid.
Plane (9): ring $C(31)$ to $C(35)$
$-12.291 x-5.023 y+7.606 z=-5.736$
|C(31) 0.004, C(32) -0.010, C(33) 0.012, C(34) -0.010 , $\mathrm{C}(35) 0.003, \mathrm{~W}(2)^{*} 1.955$ I

Normal to $W(2)$ meets plane $0 \cdot 11 \AA$ from centroid.
Plane (10): ring C(41) to $C(45)$
$2.762 x+7.286 y-6.188 z=-0.583$
$\mid C(41)-0.009, C(42) 0.007, C(43)-0.003, C(44)-0.003$, C(45) 0.007, W(2)* 1.925 J

Normal to $W(2)$ meets plane $0.11 \AA$ from centroid.

* Atoms not included in the plane calculations.
bonds: (I) $\mathrm{W}(1)-\mathrm{C}\left(2^{\mathrm{i}}\right) 2 \cdot 19(1)$, (II) $\mathrm{W}(1)-\mathrm{C}(44)$ $2 \cdot 17$ (3), W(2)-C(23) $2 \cdot 15$ (2) and (III) W(1)-C(44) $2 \cdot 18$ (1), W(2)-C(23) $2 \cdot 18$ (1) \AA. A similar situation occurs in $\left[\mathrm{Mo}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)_{2} \mathrm{Al}_{2}\left(\mathrm{CH}_{3}\right)_{3}\right]_{2}$ where the constraint imposed on the bridging $\mathrm{C}_{5} \mathrm{H}_{4}$ groups by bonding to the Mo leads to a short $\mathrm{Al}-\mathrm{C}$ bond (Forder \& Prout, 1974a).

In simple $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) M X_{2}$ systems the projection of the metal atom on to the best plane of a cyclopentadienyl ring typically lies within about $0 \cdot 1 \AA$ of the ring centroid (Prout, Cameron, Forder, Critchley, Denton \& Rees, 1974). It might be expected that one of the effects of the $\mathrm{W}-\mathrm{C}_{5} \mathrm{H}_{4} \sigma$ bonding would be to pull the ring away from this idealized position; however, this is not so and these distances are quite normal at $0.07-$ $0.20 \AA$ (Table 7).

In the η^{5}-cyclopentadienyl rings the $\mathrm{C}-\mathrm{C}$ bonds vary from (I) 1.39 (3) to 1.46 (2) [mean 1.43 (2)], (II) 1.35 (4) to 1.53 (5) [mean 1.46 (5)] and (III) $1 \cdot 39$ (2) to 1.46 (2) \AA [mean 1.43 (2) \AA], similar to those found in other complexes (Prout, Cameron, Forder, Critchley, Denton \& Rees, 1974). The C-C-C angles vary from 107 (1)-111 (1) [mean 108 (1)] (1), 101 (2)115 (3) [mean 108 (4)] (II), and 103 (1)-114 (1) ${ }^{\circ}$ [mean $108(3)^{\circ}$] (III). The $\mathrm{W}-\mathrm{C}$ (ring) distances are in the range $2 \cdot 23(1)-2 \cdot 37$ (1) [mean $2 \cdot 29(5)]$ (I), 2.212.39 (3) [mean 2.30 (6)] (II) and 2.23 (1)- 2.40 (1) \AA [mean 2.30 (\because, \AA] (III). Although the $\mathrm{C}-\mathrm{C}$ bonds show no systematic variation, it is noticeable that in each of the $\mathrm{C}_{5} \mathrm{H}_{4}$ groups the longest $\mathrm{W}-\mathrm{C}$ distance and the smallest $\mathrm{C}-\mathrm{C}-\mathrm{C}$ angle are associated with the σ bonding C atom. However, as in other $\mathrm{C}_{5} \mathrm{H}_{4}$ systems (Forder \& Prout, 1974a), the present data offer no real evidence for any significant loss of π character from

Fig. 3. Projection of trans- $\left\{\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left[\mathrm{CH}_{2} \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right] \mathrm{W}\left[\mu-\left(\sigma: \eta^{5}-\right.\right.\right.$ $\left.\left.\left.\mathrm{C}_{5} \mathrm{H}_{4}\right)\right)_{2} \mathrm{~W}(\mathrm{H})\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right\}$ on to the plane containing the two W atoms and the normals to the ($\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}$) rings. For clarity, the C atoms are labelled by their serial number only.
these rings. The results for least-squares planes through the η^{5}-cyclopentadienyl rings are given in Table 7, and the individual rings are planar within experimental error.

For (II) and (III) containing the $\mathrm{CH}_{2} \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}$ group, the $W(1)-C(1) \sigma$-bond lengths of $2 \cdot 29$ (2) and 2.284 (9) \AA, respectively, are longer than those found in other systems; for example, $2 \cdot 05$ (3)-2.13 (3) in $\mathrm{W}_{2}\left[\mathrm{CSi}\left(\mathrm{CH}_{3}\right)_{3}\right]_{2}\left[\mathrm{CH}_{2} \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right]_{4}$ (Chisholm, Cotton, Extine \& Murillo, 1978) and 2.03 (4)-2.23 (3) \AA in $\mathrm{W}_{2}\left[\mathrm{CH}_{2} \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right]_{6} \quad$ (Chisholm, Cotton, Extine \& Stults, 1976). However, they are similar to the W-C σ bond lengths of 2.276 (7) and 2.291 (7) \AA found in (η^{5} $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{~W}\left[\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{CH}_{3}\right)_{2}\right]_{2} \quad$ (Forder, Jefferson \& Prout, 1975). The $\mathrm{Si}-\mathrm{C}$ lengths are in the ranges 1.86 (2)-1.94 (4) (II) and 1.86 (2)-1.88 (2) \AA (III), and the angles vary from 102 (1)-116 (1) (II) and 104.5 (7)-117.5 (5) ${ }^{\circ}$ (III). These agree well with $\mathrm{Si}-\mathrm{C}$ lengths of 1.75 (5)-1.99 (8) and 1.80 (5)-2.04 (4) \AA, and $\mathrm{C}-\mathrm{Si}-\mathrm{C}$ bond angles of $106(2)-114$ (2) and $104(2)-118(2)^{\circ}$ in $\mathrm{W}_{2}\left[\mathrm{CSi}\left(\mathrm{CH}_{3}\right)_{3}\right]_{2}\left[\mathrm{CH}_{2} \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right]_{4}$ and $\mathrm{W}_{2}\left[\mathrm{CH}_{2} \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right]_{6}$ respectively.

We thank the Rhodes Trust for a Rhodes Visiting Fellowship at Somerville College, Oxford, to CC.

References

Berry, M., Davies, S. G. \& Green, M. L. H. (1978). Chem. Commun. pp. 99-100.
Carruthers, J. R. (1975). In CRYSTALS User Manual. Oxford Univ. Computing Laboratory.
Chisholm, M. H., Cotton, F. A., Extine, M. W. \& Murillo, C. A. (1978). Inorg. Chem. 17, 696-698.
Chisholm, M. H., Cotton, F. A., Extine, M. W. \& Stults, B. R. (1976). Inorg. Chem. 15, 2252-2257.
Forder, R. A., Gale, G. D. \& Prout, K. (1975). Acta Cryst. B31, 307-309.
Forder, R. A., Jefferson, I. W. \& Prout, K. (1975). Acta Cryst. B31, 618-619.
Forder, R. A. \& Prout, K. (1974a). Acta Cryst. B30, 2312-2317.
Forder, R. A. \& Prout, K. (1974b). Acta Cryst. B30, 2318-2322.
Green, M. L. H., Berry, M., Couldwell, C. \& Prout, K. (1977). Nouv. J. Chim. 1, 187-188.

International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.

Larson, A. C. (1967). Acta Cryst. 23, 664-665.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.

Prout, K., Cameron, T. S., Forder, R. A., Critchley, S. R., Denton, B. \& Rees, G. V. (1974). Acta Cryst. B30, 2290-2304.
Prout, K. \& Rees, G. V. (1974). Acta Cryst. B30, 27172720.

Rollett, J. S. (1965). Editor. Computing Methods in Crystallography. Oxford: Pergamon Press.

[^0]: * $\sigma(I)$ is the standard deviation based on simple counting statistics.

[^1]: * Lists of structure factors and anisotropic thermal parameters for all three compounds have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 34019 (78 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

[^2]: * Q represents the centroid of the appropriate plane: $Q(1)$ ring $C(1)$ to $C(5) ; Q(2)$ ring $C(6)$ to $C(10)$.

[^3]: * Q represents the centroid of the appropriate plane: $Q(3)$ ring $C(11)$ to $C(15) ; Q(4)$ ring $C(21)$ to $C(25) ; Q(5)$ ring $C(31)$ to $\mathrm{C}(35)$; $Q(6)$ ring $\mathrm{C}(41)$ to $\mathrm{C}(45)$.

